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Abstract
We study a class of interacting, harmonically trapped boson systems at angular
momentum L. The Hamiltonian leaves an L-dimensional subspace invariant,
and this permits an explicit solution of several eigenstates and energies for a
wide class of two-body interactions.

PACS numbers: 0530J, 0365F, 0375F, 6740D

The study of vortices in Bose–Einstein condensates of trapped atomic vapours is of considerable
experimental [1, 2] and theoretical [3–13] interest. Present experiments and much theoretical
work [3–7] focus on the Thomas–Fermi regime of short coherence length [14]. The opposite
limit of perturbatively weak contact interactions has not yet been realized experimentally but is
of theoretical interest as well [8–13]. The case of attractive interactions was studied by Wilkin
et al [9]. Mottelson developed a theory for repulsive interactions [10], and Kavoulakis et al [12]
and Jackson et al [13] compared mean field and exact numerical results. Exact diagonalization
techniques by us showed that the ground state energy depends linearly on angular momentum
and led to an analytical expression for the ground state wavefunction [11]. Recently, the form
of this wavefunction and its eigenenergy were confirmed in analytic calculations [15–17].
However, we still lack insight about why certain eigenstates turn out to be simple analytical
functions.

We show in this paper that there is a subspace structure that explains these findings.
Interestingly, this structure is not limited to the two-body contact interaction considered in
previous investigations but present in a rather large class of Hamiltonians. Let us consider a
system of N harmonically trapped bosons in two spatial dimensions1 at angular momentum L.
The trap Hamiltonian is

Ĥ = 1
2

N∑
j=1

(−∇2
j + r2

j − 2) (1)

1 The three-dimensional problem is essentially two dimensional; see e.g. [13].
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where r2
j = x2

j +y2
j . Let us use complex single-particle coordinates zj = xj+iyj , j = 1, . . . , N ,

and fix the angular momentum to be L. The eigenfunctions of the trap Hamiltonian are of the
form

ψ(z1, . . . , zN) = φ(z1, . . . , zN) exp

(
− 1

2

N∑
j=1

|zj |2
)

(2)

and have degenerate energy E = L. In equation (2) φ(z1, . . . , zN) denotes a homogeneous
polynomial of degreeL that is totally symmetric under permutation of particle indices. Suitable
basis functions for such polynomials are products

φ(z1, . . . , zN) = eλ1eλ2 . . . eλk

where eλ denotes the elementary symmetric polynomial [18]

eλ(z1, . . . , zN) =
∑

1�p1<p2<···<pλ�N

zp1zp2 . . . zpλ

and {λ1, λ2, . . . , λk} is a partition of L into at most N integers, e.g.
∑k

j=1 λj = L with
N � λ1 � λ2 � · · · � λk � 0. We set e0 = 1. From here on we omit the notation of the
ubiquitous exponentials in the wavefunction and restrict ourselves to the regime 0 � L � N .
In this regime, N is simply a parameter of the problem, and the dimension of Hilbert space is
equal to the number of partitions of L into integers.

The operator for the total angular momentum is

L̂ =
N∑
j=1

zj ∂j (3)

where ∂j denotes the derivative with respect to zj and acts only on the polynomial part of the
wavefunction. Another important observable is the angular momentum of the centre of mass.
Its operator is given by

L̂c ≡ zc Dc (4)

where zc = e1/N denotes the centre of mass and

Dc =
N∑
j=1

∂j . (5)

Again, it is understood that derivatives act on the polynomial part of the wavefunction only. Lc

has eigenvalues 0, 1, 2, . . . , L − 2, L and commutes with the harmonic trap Hamiltonian (1)
and the angular momentum (3). We further have the following commutator relations:

[L̂,Dc] = −Dc [L̂, zc] = zc [L̂c,Dc] = −Dc [L̂c, zc] = zc. (6)

The introduction of perturbatively weak interactions lifts the degeneracy of the trap
Hamiltonian. In what follows we are interested in two-body interactions of the form

V̂ = g

L∑
m=0

cmÂm

Âm =
∑

1�i<j�N

(zi − zj )
m (∂i − ∂j )

m
(7)

where the derivatives act only on the polynomial part of the wavefunction. We choose gN 
 1
to be in the perturbative regime. Note that a large class of two-body interactions is of the
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form (7). Consider for instance the two-body potential V (r) = r2n. Comparison of matrix
elements shows that〈 ∑

i<j

(ri − rj )
2n

〉
=

〈 ∑
i<j

[(z∗
i − z∗

j )(zi − zj )]
n

〉

=
〈 ∑

i<j

(∂i − ∂j )
n(zi − zj )

n

〉

=
〈 n∑
m=0

(
n

m

)
n!

m!
2n−m Âm

〉
.

Thus, any potential that depends analytically on the squared inter-particle distance r2 can be
written in the form of equation (7). Further examples include zero-range potentials of the form

V (r) = 2πg[a0δ(r) + a1∇2δ(r) + a2∇4δ(r)].

For cm = (−1/2)m/m! the interaction (7) corresponds to the two-body contact interaction
V = 2πgδ(�r). This can be seen by computing and comparing matrix elements of these
two different representations of the interaction. It is also instructive to analyse the action of
the operator (7) on the wavefunction. Inserting the appropriate coefficients for the contact
interaction into the Hamiltonian (7) we obtain a Taylor series. Thus,

L∑
m=0

1

m!

(
zj − zi

2

)m

(∂i − ∂j )
mφ(z1, . . . , zi, . . . , zj , . . . , zN)

=
L∑

m,n=0

(−1)n

m!n!

(
zj − zi

2

)m+n

∂mi ∂
n
j φ(z1, . . . , zi, . . . , zj , . . . , zN)

= φ

(
z1, . . . , zi − zi − zj

2
, . . . , zj − zj − zi

2
, . . . , zN

)

= φ
(
z1, . . . ,

zi + zj

2
, . . . ,

zj + zi

2
, . . . , zN

)
.

In [17] we presented an alternative differential operator with this effect on wavefunctions.
The operators Âm commute with L̂, L̂c, zc and Dc. Equation (6) thus implies that the

application of zc to eigenstates with quantum numbers L,Lc and energy gE yields eigenstates
with quantum numbers L + 1, Lc + 1, gE. Similarly, the application of Dc to such eigenstates
yields eigenstates with quantum numbers L−1, Lc −1, gE. These properties are well known
for the case of a two-body contact interaction [19, 20] and generalize to the Hamiltonian (7).
Note that the operators A0 and A1 are simply given by

Â0 = 1
2N(N − 1)

Â1 = N(L̂ − L̂c).
(8)

Applying the operators Âm to the elementary symmetric polynomials yields

Âm e1 = 0 for m � 1. (9)

Thus, the one-dimensional space V0 = span{eL1 } is an invariant subspace of the Hamiltonian
and therefore an eigenstate. Further,

Âm eλ = 0 for m � 3. (10)

This immediately shows that the (L − 1)-dimensional vector space

V1 = span{eL−λ e
λ
1 : λ = 0, 1, 2, . . . , L − 2} (11)
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is annihilated by Am for m � 3. The space W1 = V0 ∪ V1 is an invariant subspace of the
Hamiltonian (7) since

Â2 eλ = 2λN eλ − 2(N − λ + 1) e1 eλ−1 (12)

and

Â1 eλ = Nλ eλ − (N − λ + 1) e1 eλ−1.

Eigenfunctions of the Hamiltonian (7) in the subspace W1 are obtained by constructing states
with good Lc quantum numbers. For this purpose we project eL onto the space with Lc = 0
and obtain

eL(z1 − zc, . . . , zN − zc) =
L∑

m=0

1

m!
(−zc)

m Dm
c eL(z1, . . . , zN)

= (−1)L

L!
(L̂c − 1) (L̂c − 2) . . . (L̂c − L) eL(z1, . . . , zN). (13)

The rhs of the first line is the Taylor expansion, yielding a shift in the single-particle coordinates
by −zc. The second line is obtained by combining the operators Dc and zc to the operator for
the angular momentum of the centre of mass (4). This yields an operator that projects onto the
subspace with Lc = 0. The expansion [17]

eL(z1 − zc, . . . , zN − zc) =
L∑

m=0

(
N − m

L − m

)
(−zc)

L−mem(z1, . . . , zN) (14)

shows explicitly that only states of W1 are involved in the construction of a state with Lc = 0.
The states

zλc eL−λ(z1 − zc, . . . , zN − zc) λ = 0, 1, 2, . . . , L − 2, L (15)

thus constitute an orthogonal basis of W1. Since they have different quantum numbers Lc = λ

they are also eigenstates of the Hamiltonian (7). Note that these wavefunctions do not depend
on the coefficients cm in the Hamiltonian. The corresponding energies are obtained by applying
the Hamiltonian (7) to the states (15). Using equations (8), (12) and (14) yields

Eλ = g[ 1
2N(N − 1)c0 + N(L − λ)(c1 + 2c2)] λ = 0, 1, 2, . . . , L − 2, L. (16)

The states (15) thus form a ladder. Let us consider the important case of a two-body contact
interaction. Analytical arguments [9] showed that the ground state is obtained for λ = L

in the case of attractive interactions g < 0. For repulsive interactions, a combination of
analytical [15–17] and numerical calculations [11] showed that the ground state is obtained
for λ = 0. It is interesting to note that the corresponding fermionic problem, i.e. the quantum
Hall effect with zero-range interaction potentials, also has an exact ground state solution—the
Laughlin wavefunction [21].

Note that the annihilation properties described in equations (9) and (10) may be generalized
to further subspaces. Let

Vk = span

{
eλ1 eλ2 . . . eλk e

m
1 : m = 0, 1, . . . , L − 2k;

k∑
j=1

λj = L − m; λj > 1

}
(17)

denote the space of wavefunctions that contain products of k elementary polynomials different
from e1 and e0. Using equations (9) and (10) one obtains

Âm Vk = 0 for m � 2k + 1. (18)
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However, these spaces are not invariant subspaces of the Hamiltonian, since e.g.
e3

2(z1, . . . , z6) ∈ V̂ e2
3(z1, . . . , z6). Let us consider the space that is generated when acting

with the Hamiltonian (7) on Vk for k > 1. A direct calculation shows that

(∂i − ∂j )
µ (zm − zn)

ν(∂m − ∂n)
ν Vk = 0 for µ � ν + 2k + 1.

Therefore,

Âm V̂ Vk = 0 for m � 4k + 1.

Introducing the subspaces

Wk = ∪k
j=0Vj

yields

V̂ Wk ⊂ W2k for k > 1.

The Hamiltonian matrix thus can be cast into a block-tridiagonal form. The invariant subspaces
W0 and W1 yield a block-diagonal structure, and the remaining matrix is block tridiagonal.

The knowledge of L eigenstates (15) permits us to determine two additional eigenstates
that are independent of the specific coefficients in the Hamiltonian (7). For L = 4 and 5,
there are two basis states with Lc = 0. One of them has already been determined above, i.e.
eL(z1 − zc, . . . , zN − zc). The other two wavefunctions in question are

φ4 = N

N∑
j=1

(zj − zc)
4 + 3

( N∑
j=1

(zj − zc)
2

)2

φ5 = N

N∑
j=1

(zj − zc)
5 + 2

N∑
j=1

(zj − zc)
2

N∑
i=1

(zi − zc)
3.

These wavefunctions are polynomials of degrees four and five, respectively. Therefore, one
finds φ4, φ5 ∈ W2.

The results derived so far were obtained for 0 � L � N . For L > N the Hilbert
space depends on both L and N . The definition of the spaces Vk has to be modified
correspondingly, e.g. V1 = span{eL−λ e

λ
1 : λ = max (0, L − N), . . . , L − 2} to be compared

with equation (11). However, the annihilation property described in equation (18) remains
valid and the Hamiltonian matrix continues to be of block-tridiagonal form. Note that the
wavefunctions (15) are restricted to parameter valuesλ = max (0, L − N), . . . , L−3, L−2, L
for L > N .

Quantum mechanical systems with invariant subspaces have received considerable
attention in recent years, since (quasi-) exactly solvable systems fall into this class. For a general
discussion see, for example, [22–25]. In contrast to this paper, the interest there is in infinite-
dimensional Hilbert spaces with a nested sequence of finite-dimensional subspaces, and most
research has been limited to systems with a few degrees of freedom. Note finally that partially
solvable many-body systems [25] or systems with partial dynamical symmetry [26–28] also
permit the analytical computation of selected eigenstates.

In summary, we have studied a large class of harmonically trapped, interacting boson
systems at angular momentumL. The Hamiltonian leaves aL-dimensional subspace invariant,
and the quantization of the angular momentum for the centre of mass yields several eigenstates
that are independent of the details of the two-body interaction. Important examples of suitable
interactions are two-body potentials of zero range and interactions that are analytical in the
squared inter-particle distance.
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